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Dynamic Models for Health

e Classic: Aggregate Models
— Differential equations

— Population classified into 2 or more state variables
according to attributes

— | State Variables|, |Parameters| << |Population|

e Recent: Individual-Based Models

— Governing equations approach varies
— Each individual evolves
— | State Variables|,|Parameters| o |Population|
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Contrasting Model Granularity
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Network Embedded Individuals
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Regular Spatial Embedding
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Importance of Heterogeneity

 Heterogeneity often significantly impacts policy
effectiveness

— Policies preferentially affect certain subgroups

e |nfection may be maintained within certain subgroups even though would tend to
go extinct with random mixing in the entire population

— Policies alter balance of heterogeneity in population

e Shifts in the underlying heterogeneity can change aggregate population
statistics

— Given a non-linear relationship, inaccurate to use the mean as a
proxy for whole distribution
e Assessing policy effectiveness often requires
representing heterogeneity

e Flexibility in representating heterogeneity is hard to
achieve in aggregate (coarse-grained) models



Longitudinal Heterogeneity

 There can be great heterogeneity not only
cross-sectionally, but also longitudinally

— Particularly in a path-dependent system,

trajectories that are originally close may diverge
dramatically

e Capturing this longitudinal disparity can be
important for understanding intervention
effects
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Elements of Individual State

e Example Discrete
— Ethnicity
— Gender
— Categorical infection status

 Continuous
— Age
— Elements of body composition
— Metabolic rate
— Past exposure to environmental factors
— Glycemic Level
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EXample Oor Discrete S>tates
Binary Presence in Discrete State
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Example of Likelihood of Presence in
Discrete State
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Feedbacks

e Some aggregate feedbacks lie within individual
agent
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Feedbacks

e Many aggregate feedbacks are between
agents
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Granularity Selection: Problem Specific

e Selection of granularity is a function of question that
are asking — not of the “true nature of the system”

 Quanta of most obvious system components may not
align with needs for insight

— May gain benefits from higher-level representation

e Many high-level behavior of complex systems can be explained with
very simple models

e Often gain greater insight from simpler model: Cf Gas laws vs.
lattice gas model

— May wish to seek lower level model

e Small infection spread model : Characterization at level of immune
response rather than monolithic person



Myth of Individual-Based Models as
“Modeling from the Bottom Up”

* Asingle person is a natural locus of description
— Presents for care
— Lives
— Dies
— Coupled internal systems
e But the world has no natural “bottom”

— It is frequently desirable to include within a person a
great deal of “within the skin” detail
 The issues of model depth & breath are just as
pressing in individual-based models as in aggregate
modeling



Contrasting Benefits

Aggregate Models

Easier

— Construction

— Calibration

— Parameterization

— Analysis & Understanding

Performance

— Lower baseline cost
— Population size invariance

Less pronounced stochastics

— Less frequent need for Monte Carlo
ensembles

Quicker construction,
runtime =More time for
understanding,refinement

Individual-Based Models

Fidelity to some dynamics
Support for highly targeted
policy planning

Ability to calibrate to & validate
off of longitudinal data

Better heterogeneity flexibility

Examining finer-grained
consequences
— e.g. transfer effects w/i pop.
— Network spread

Simpler description of some
causal mechanisms



Simpler Causal Description

e Understanding of individual behavior sometimes
exceeds that of collective behavior

— Response to locally visible incentives

— Company’s response to competition

— Young person’s response to peer pressure
— Individual’s response to scarcity of good

e Sometimes it is very difficult to derive a priori the

aggregate dynamics resulting from individual
behavior

e Individual model can be simpler, more transparent



Fidelity to Dynamics

Adequate characterization of system’s causal processes
may require fine-grain representation

— Rich heterogeneity

— Learning and adaptation

— Response to local incentives

— Memoryful processes

— Behavior over persistent networks

Aggregate behavior is not necessarily the same as
| Population| *(Behavior of “average” individual)

May be able to calibrate an aggregate model to results
of individual-level model post hoc



Example of Concern: History
Information

 Heterogeneity with respect to individual history can
be highly important for future health
— Whether vaccinated
— In utero exposure
— Degree of glycemic control over the past decade
— Exposure to adiposity
— Previous exposure to a pathogen

* |n some areas of health, we have access to
longitudinal data that provides information on
individual historical trajectories.



Capturing History Information

 |ndividual based model

— Both discrete & continuous history information can be
readily captured
e Categorical/discrete: State (in statechart) or variable
e Continuous: Variable

— Readily able to capture records of trajectories

e Aggregate model

— Categorical/discrete: Limited discrete history information
can be captured by disaggregating stocks

e Curse of dimensionality provides tight limits on # of aspects of
history can be recorded

— Continuous: Almost always infeasible

— Very complex to provide distributions of trajectories (via
convolution of potentially changing PSFs of stocks)



Longitudinal Fidelity:
Individual-Based Models

 An individual-based model provides easily accessible
cross-sectional and longitudinal descrip. of system state

— The system state at a particular moment in time is cross-
sectional

— By following & recording the trajectories of particular
individuals, we can obtain longitudinal description
e |n Calibration & validation, we can do rich comparison
of both longitudinal and cross-sectional descriptions
against available point or time-series data

— It is in principle possible to have a model that accords with
cross-sectional data, but which is at odds longitudinally



Longitudinal Fidelity: Aggregate Models

 An aggregate model provides an ongoing series of
cross-sectional descriptions of system state

— In Calibration & validation, we can do rich comparison of
these cross-sectional descriptions against available point
or time-series data

— Because the model does not track individuals, we
generally cannot explicitly extract model longitudinal
trajectories from the model for comparison with
historical data we have longitudinal trajectories



Aggregate Models & Trajectories

 While they may not be easy to study explicitly,
aggregate models do impose some assumptions
about the trajectories of individuals

e This reflects the assumption of a Markovian system:
An aggregate model will assume that the placement
of an individual at a particular stock in the model
adequately summarizes all the historica
information needed to describe future dynamics

e While it is somewhat awkward to do, we can test
the longitudinal data at different particular
components to see how well it holds up to Markov



Example of Markovian Concern

 For example, such a model assumes that the route
of entry to a stock is independent of the route of
exit

e E.g. If in longitudinal data we don’t see

independence between routes of entry to a model
stock & routes of leaving that stock, that feature of

the system may be poorly approximated by that
model
— In some cases, this could be of concern



Shortcomings of Aggregate

Comparisons

e If we find that aspects of the data are Markovian
with respect to model stocks we can be hopeful
about our structure

e Common problems
— Due to attribute-based disaggregation, a model that
incorporates all necessary historical information is too
big
— We may not have data on transitions through particular

model stocks — and thus cannot test if it adheres to
Markovian assumptions with respect to those stocks

— We cannot easily compare longitudinal model
predictions vs. historic data (see next slide)



Comparisons of Model & History that are
Difficult in an Aggregate Model

* Proportions of people with certain history
characteristics (e.g. fraction of women who develop

T2DM who have had 2 or more bouts of gestational

diabetes)
— Can be very valuable for calibration
— This is critical for assessing model accord with observed

effect size (Relative Risk/Odds ratio)

 Model vs. historic trajectories (e.g. for timing of
some transitions) for people with certain history

characteristics



Example of Additional Information
from Longitudinal Data

Consider trying to distinguish pairs of situations
e.g.: Smoking
— Situation 1: One set of people quit & stay quit as former
smokers, another set remain as current smokers
— Situation 2: The entire set of people cycle through
situations where they quit, relapse & repeat
These two situations have very different health
consequences

We'd probably choose vary different sets of
interventions for these two situations

Similar examples are easy to imagine for obesity,
STls, TB, glycemic control & diabetes, etc.



Trajectories Summary
e |f either or both of the following is true....

— You have significant longitudinal information you’d strongly
like the model to match

— You have good reason to think that trajectory history has
important consequences for health

 Then you should build a model that captures this
history information

— By disaggregating stocks, you can capture limited discrete
history information in an aggregate model (e.g. whether a
person was exposed in utero, Time Since Quit for FS, whether
a woman has had a history of gestational diabetes)

— There is significantly greater flexibility for collecting
continuous or discrete history information for guiding
individual dynamics & for calibration/validation comparison
to historic longitudinal data



Calibration & Validation Comparisons

 We can compare statistics from histories in an
individual-based model to statistics from
actual histories

— See if matches non-markovian nature
— See how matches distribution of times



Recall: Importance of Heterogeneity

 Heterogeneity often significantly impacts policy
effectiveness

— Policies preferentially affect certain subgroups

e |nfection may be maintained within certain subgroups even though would tend to
go extinct with random mixing in the entire population

— Policies alter balance of heterogeneity in population

e Shifts in the underlying heterogeneity can change aggregate population
statistics

— Given a non-linear relationship, inaccurate to use the mean as a
proxy for whole distribution
e Assessing policy effectiveness often requires
representing heterogeneity

e Flexibility in representating heterogeneity is hard to
achieve in aggregate (coarse-grained) models



Impacts of Heterogeneity
on Policy Effectiveness

Value of breast cancer detection (Park & Lees)

Impact of airbags on deaths (Shepherd&Zeckhauser)
Value of hernia operations (Neuhauser)

Impact of cardiovascular disease interventions (Chiang)
Controlling blood pressure (Shepherd&Zeckhauser)

Effectiveness of mobile cardiac care unit
(Shepherd&Zeckhauser)

Value of breast cancer treatment (Fox)
Taeuber paradox (Keyfitz)



Frequent Heterogeneity Concerns

 No clear boundaries at which to divide people
up into discrete categories

* Many dimensions of heterogeneity
simultaneously

e Capturing state with respect n factors requires n
dimensions of heterogeneity!

* Need to consider progression along many
dimensions simultaneously



Challenges for Aggregate Model

Formulation: Heterogeneity
 Two aggregate means for representing

heterogeneity are limited:
— Attribute-based disaggregation

 Need n dimensions to capture individual state with
respect to n factor

* Poor (geometric) scaling to large # dimensions of
heterogeneity

e Global structural, equation changes required to
incorporate new heterogeneity dimensions

e Awkwardness in stratifying

— Co-flows
e Efficient and precise but highly specialized
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Combinatorial Subscripting: Multi-
Dimensional Progression
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Parallel
Transitions




Parallel State Transition Diagrams
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Capturing Heterogeneity in Individual-
Based vs. Aggregate Models

 Consider the need to keeping track a new piece of
information for each person (with d possible values)

— E.g. age, sex, ethnicity, education level, strain type, city
of residence, etc.

e Aggregate Model: Add a subscript

— This multiplies the model size (number of state variables
into which we divide individuals) by d!

* |ndividual based model: Add field (variable/param)

— If model already has c fields, this will increase model size
oy a fraction 1/c.




Challenges for Model Formulation:
Persistent Interaction

Network topologies can affect qualitative
behavior

Aggregate representations of network structure
are expensive and awkward

IBM permit expressive, efficient characterization
of both dense & sparse networks

While percolation over many topologies can be
simulated in aggregate models, parameter
calibration often requires finer-grained
simulation



Social Network Analysis: Preliminary
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Network Spread of Obesity
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TB Infection and Contact Network




Multi-scale Phenomena

 Frequently we are concerned about
phenomena on a variety of scales
— Aggregate societal & policy level
— Institutional level

— Individual level

— Intra-institutional level
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Network Medicine —
From Obesity to the “Diseasome”
Albert-Laszl6 Barabasi, Ph.D.

N EMGL | MED 3574 www HEJM.ORS  JULY 26, 2007
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Figure 1. Complex Networks of Dinect Relevanca to Network Madicine.

Although they are often treated separately, most human diseases are not indepe ndent of each other. Many diseases
are associated with the breakdown of functional modules that are best described as subnetworks of a complex net
waork con necting mary cellular components. Therefore, an understanding of the functionally relevant genetic, regu-
latery, metabelic, and pretein—protein interactions in a cellular network will play an impertant rele in understanding
the pathophysiolegy of human diseases (bottom layer]. One way to visualize the ensuing potential interrelationships
amang human diseases is te construct a disease network (middle layer) in which two diseases are connected if they
hawve a common genetic or functional arigin. For exam ple, an the basis of cur current knowledge of disease ganes,
obesity is connacted to at least seven other diseases such as diabetes, asthma, and insulin resistance, since genes
associated with these diseases are known to affect chasity as well. The third netwark of key importance to human
disease is the social network, which enco mpasses all human-to-human interactions (e.g, familial, friendship, sexu-
al, and proximity-based contacts) that play a role in the spread of pathogens (top layery. These networks alse have
an important role in the spread of abesity. Efforts to understand the interactions between the cellular, disease, and
cocial networks are part of network madicine, which aims to quantify the complex interinked factors that may con-
tribute to individual diseases.
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Finer Grained Policy Planning

* In the presence of networks or non-well-
mixed populations, big difference in effects of

targeted interventions
° e.g.
— Targeted intervention within scale-free network

— Impact of incentives on competition and
cooperation

— Impact of road structure on traffic jams



Parameterization & Calibration

e Individual-based models have many parameters

— Estimating all of the parameters can require much effort

— Calibration generally underdetermined (large # of
possible sets of parameter values that could calibrate

well)
— May need to make simp

 Pronounced individual-
require Monte-Carlo ca

ifying assumptions

evel stochastics frequently

ibration



Individual-Based Model Performance
Scaling

 Performance varies with population size

— Large populations impose high computational
resource demands

— Scaling can be superlinear (e.g. O(n?) connections to
consider)

— This can frequently lead to simulations taking
minutes at the least, commonly hours or even days

 Desire to characterize stochastic nature of
individual-level behavior typically requires Monte
Carlo approaches

— This can lead to days or weeks to complete



Memoryless vs. Memoryful Processes

e ODE models can adequately capture only
memoryless transition processes out of a stock

— Stocks treated as “well-mixed”: Transition probability
does not depend on residence time

— Memoryful processes can be approximated, but
requires changing model structure to reflect a simple
functional relationship (nt" order delays)

 |[BM can record residence time in state & allow
probability of transitions to depend on this
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Individual vs. Aggregate Models: Necessary

Transition | Network Calibration Capturing
Generaliy | Represent Performance Issues | ceanny
ti apation
aHen Basal | Scaling Scaling with Need for
with Heterogeneity | Stochastics
Population /Monte
Carlo
Individual ++ ++ ++ ++
Models
Aggregate + ++ |4+ | ++ +
Models

e Both individual-level and aggregate modeling
have inherent and non-trivial tradeoffs

e Both approaches likely to retain strong appeal in
systems modeling



Areas of Advantage of Individual-Based
Modeling
e Examining finer-grained consequences
— Network spread
— Transfer effects within population
— Detailed spatial dynamics
— Effects of population heterogeneity
— Effects of highly targeted policies

— Effects of individual-level synergies (e.g. multiple risk
factors)

e Simple individual-based description of causal mechanisms

e Sufficient individual-level (distributional) data are available for
policy modeling beyond exploratory models
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v’ Comparing Aggregate & Individual Based Models
v’ Granularity Tradeoffs

e Tools for individual-based modeling
— Individual-Based Modelers in SD

— Individual-based models in Agent-Based tools
e Other tradeoffs
e Looking forward




Agent-Based Modeling

We can capture individuals in many ways

| view Agent based models (ABM) as a type of
individual-based modeling that encapsulates a given
individual as a software object with

— Methods
— Properties

Objects provide a convenient abstraction for
individuals

Agent-based models currently require writing at
least some code in programming languages

We can formulate SD models w/i agent-based tools
— | view such models as simultaneously SD & ABM

We can follow an SD process to build & use agent-
based models



The (Current) Package Deal

* Traditional system

* ABM (AnyLlogic) dynamics packages
— Supports individual-based or — Supports individual-based or
aggregate aggregate
— No trajectory files — Trajectory files well

supported
— Poor discrete rule support
— Declarative specification

— Equational notation &
reasoning

— Explicit mathematical

— Both discrete & continuous
rules & states

— Primarily imperative
specification

— Algorithmic (imperative)

— Little/No explicit semantics
mathematical semantics — Monolithic
— Modularity mechanisms — Limited metadata (unit

— No metadata checks)



Current Package Deal:
I\/Iodelmg Implications (From my Perspective)
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Current ABM and TSD packages both have important
advantages



Central Points: Looking Forward

Most current differences reflect important but non-
essential methodological choices / tool characteristics

In the long run, these differences will likely lessen and the
choice that will remain is that of model granularity

Both individual-based models and aggregate models will
play important roles in system dynamics

There are good reasons to use all of individual-based
models, aggregate models, and hybrid systems
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